Skip to main content

ELECTROMAGNETICS

Electromagnetic analysis has been an indispensable part of many engineering and scientific studies since J. C. Maxwell completed the electromagnetic theory in 1873.This is due primarily to the predictive power of Maxwell's equations as proven over the years and the pervasiveness of electromagnetic phenomena in modern technologies. Examples of these technologies are radar, remote sensing, geo-electromagnetics, bio-electromagnetics, antennas, wireless communication, optics, high-frequency/highspeed circuits, and so on. 

Before we look specifically at the case of the coilgun it will be beneficial to briefly examine the fundamentals of electromagnetic fields and forces. Whenever there is charge in motion there is a corresponding magnetic field associated with it. This motion can take the form of current in a wire, orbital electrons in a molecule or the flow of a plasma etc. To help us with our understanding of electromagnetics we employ the concepts of the electromagnetic field and magnetic poles. The differential vector equations which describe this field were developed by James Clark Maxwell.

The basic law of electromagnetism is Faraday's Law of Induction. Michael Faraday was a pioneer in the fields of electromagnetism and electrochemistry during the 1800s, and one of the laws he formulated simply by observation remains the basis for electromagnetic induction.


Comments

Popular posts from this blog

POWER SYSTEMS LOSS.COM: LOSSES IN ELECTRICAL SYSTEM

What is powersystemsloss all about?    System's loss reduction is now one of the most growing trends in every electric distribution utility. Primarily triggered by economics and regulation concerns, Transmission and Distribution companies now sets more focus in reducing losses and become as an efficient utility as possible in delivering power. Information found in this site will be very useful not only to electrical practitioners but it is also our goal to help students better understand the actual world. Thank you and lets all enjoy learning! continue..   Back to basic    n case you don't know, the power we get from our household electrical outlet didn't just appear in the thin air. It may appear that it is coming out from our walls but we all know that looks can be deceiving. Before reaching our respective homes, electric current passes through miles and miles of c...

FRUITS AS BATTERY AND SOURCE OF ELECTRICITY

Electric Fruits Project   The purpose of this project was to find out which fruit would generate enough electricity to light a light bulb and to discover which fruit would light the bulb the longest. To conduct my experiments I used a Multimeter, copper and zinc wires & electrodes, alligator clips with leads, various light bulbs and five types of fruits. continue.. Why Do Citrus Fruits Produce Electricity?   In order to generate electricity, there must be a power source and a complete circuit. When using a citrus fruit to create electricity, these rules still apply. In a simple experiment using a citrus fruit, the components of the circuit include: a lemon or other fruit, wire, two different metal elements and a small light bulb. The lemon in this circuit serves as the battery and power source. continue.. Fruit Power Project   Purpose To demonstrate how an electrical current can be generated using citrus fruits (such as lemons or li...

ELECTROCUTION: ELECTRIC ACCIDENT THAT CAN BE AVOIDIED

Electrocution   Electrocution is a type of electric shock that, as determined by a stopped heart, can end life. Electrocution is frequently used to refer to any electric shock received but is technically incorrect; the choice of definition varies from dictionary to dictionary. However, in the vernacular, the term electrocution is used to mean: death, murder or a sudden accident caused by an electric shock. deliberate execution by means of an electric shock, such as an electric chair; the word "electrocution" is a portmanteau for "electrical execution".. continue.. Electric Shock   Electric Shock of a (human) body with any source of electricity that causes a sufficient current through the skin, muscles or hair. Typically, the expression is used to denote an unwanted exposure to electricity, hence the effects are considered undesirable. The minimum current a human can feel depends on the current type (AC or DC) and frequency. A person can feel at least 1 mA (rm...