SEARCH YOUR TOPIC HERE!

FIBER OPTICS: THE GLASS CONDUCTORS


An optical fiber (or optical fibre) is a flexible, transparent fiber made of a pure glass (silica) not much wider than a human hair. It functions as a waveguide, or "light pipe", to transmit light between the two ends of the fiber.[1] The field of applied science and engineering concerned with the design and application of optical fibers is known as fiber optics. Optical fibers are widely used in fiber-optic communications, which permits transmission over longer distances and at higher bandwidths (data rates) than other forms of communication. Fibers are used instead of metal wires because signals travel along them with less loss and are also immune to electromagnetic interference.continue..


Optical communication systems date back two centuries, to the "optical telegraph" that French engineer Claude Chappe invented in the 1790s. His system was a series of semaphores mounted on towers, where human operators relayed messages from one tower to the next. It beat hand-carried messages hands down, but by the mid-19th century was replaced by the electric telegraph, leaving a scattering of "Telegraph Hills" as its most visible legacy.continue..

You hear about fiber-optic cables whenever people talk about the telephone system, the cable TV system or the Internet. Fiber-optic lines are strands of optically pure glass as thin as a human hair that carry digital information over long distances. They are also used in medical imaging and mechanical engineering inspection.
In this article, we will show you how these tiny strands of glass transmit light and the fascinating way that these strands are made.continue..

Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of light through an optical fiber. The light forms an electromagnetic carrier wave that is modulated to carry information. First developed in the 1970s, fiber-optic communication systems have revolutionized the telecommunications industry and have played a major role in the advent of the Information Age. Because of its advantages over electrical transmission, optical fibers have largely replaced copper wire communications in core networks in the developed world.continue..

Fiber optic systems have many attractive features that are superior to electrical systems. These include improved system performance, immunity to electrical noise, signal security, and improved safety and electrical isolation. Other advantages include reduced size and weight, environmental protection, and overall system economy. Table 1-1 details the main advantages of fiber optic systems.continue..

Students often ask how fiber is made. It's certainly not obvious how something only 1/8 of a mm - 0.005 inches - in diameter can be made with such precison. Some basic facts about how optical fiber is manufactured may help to provide a better understanding of how optical fiber works too. At the Core- As you know, there are two main types of optical fiber: single-mode and multimode. Both types of fiber are composed of only two basic concentric glass structures: the core, which carries the light signals, and the cladding, which traps the light in the core (Fig. 1).continue..

No comments:

Post a Comment