Skip to main content

IMPEDANCE, RESISTANCE, REACTANCE

Impedance is defined as the frequency domain ratio of the voltage to the current. In other words, it is the voltage–current ratio for a single complex exponential at a particular frequency ω. In general, impedance will be a complex number, with the same units as resistance, for which the SI unit is the ohm (Ω). For a sinusoidal current or voltage input, the polar form of the complex impedance relates the amplitude and phase of the voltage and current. In particular,

Opposition that a circuit presents to electric current. It includes both resistance and reactance. Resistance arises from collisions of the current-carrying charged particles with the internal structure of the conductor. Reactance is an additional opposition to the movement of electric charge that arises from the changing electric and magnetic fields in circuits carrying alternating current. Impedance in circuits carrying steady direct currents is simply resistance. The magnitude of the impedance Z of a circuit is equal to the maximum value of the potential difference, or voltage V, across the circuit, divided by the maximum value of the current I through the circuit, or simply Z = V/I. The unit of impedance is the ohm.


The units of resistance are Volts / Ampères, or Ohms (). Thus, for a given potential difference, materials with a high resistance will allow a small current relative to a material with a low resistance. In analogy with heat resistance and conductivity, one can define an electrical conductivity as being proportional to the inverse of the resistance. Thus, good electrical conductors, such as copper, have a low resistance, and poor electrical conductors, such as concrete, have a high resistance.


There is another important property that can be measured in electrical systems. This is resistance, which is measured in units called ohms. Resistance is a term that describes the forces that oppose the flow of electron current in a conductor. All materials naturally contain some resistance to the flow of electron current. We have not found a way to make conductors that do not have some resistance.

In the reactance equation, the term “2Ï€f” (everything on the right-hand side except the L) has a special meaning unto itself. It is the number of radians per second that the alternating current is “rotating” at, if you imagine one cycle of AC to represent a full circle's rotation. A radian is a unit of angular measurement: there are 2Ï€ radians in one full circle, just as there are 360o in a full circle. If the alternator producing the AC is a double-pole unit, it will produce one cycle for every full turn of shaft rotation, which is every 2Ï€ radians, or 360o. If this constant of 2Ï€ is multiplied by frequency in Hertz (cycles per second), the result will be a figure in radians per second, known as the angular velocity of the AC system.

IThis might be a good place to recall what you learned about phase in chapter 1. When two things are in step, going through a cycle together, falling together and rising together, they are in phase. When they are out of phase, the angle of lead or lag-the number of electrical degrees by which one of the values leads or lags the other-is a measure of the amount they are out of step. The time it takes the current in an inductor to build up to maximum and to fall to zero is important for another reason. It helps illustrate a very useful characteristic of inductive circuits-the current through the inductor always lags the voltage across the inductor.


Comments

Popular posts from this blog

FRUITS AS BATTERY AND SOURCE OF ELECTRICITY

Electric Fruits Project   The purpose of this project was to find out which fruit would generate enough electricity to light a light bulb and to discover which fruit would light the bulb the longest. To conduct my experiments I used a Multimeter, copper and zinc wires & electrodes, alligator clips with leads, various light bulbs and five types of fruits. continue.. Why Do Citrus Fruits Produce Electricity?   In order to generate electricity, there must be a power source and a complete circuit. When using a citrus fruit to create electricity, these rules still apply. In a simple experiment using a citrus fruit, the components of the circuit include: a lemon or other fruit, wire, two different metal elements and a small light bulb. The lemon in this circuit serves as the battery and power source. continue.. Fruit Power Project   Purpose To demonstrate how an electrical current can be generated using citrus fruits (such as lemons or limes) that is strong enough to power a small

ELECTROCUTION: ELECTRIC ACCIDENT THAT CAN BE AVOIDIED

Electrocution   Electrocution is a type of electric shock that, as determined by a stopped heart, can end life. Electrocution is frequently used to refer to any electric shock received but is technically incorrect; the choice of definition varies from dictionary to dictionary. However, in the vernacular, the term electrocution is used to mean: death, murder or a sudden accident caused by an electric shock. deliberate execution by means of an electric shock, such as an electric chair; the word "electrocution" is a portmanteau for "electrical execution".. continue.. Electric Shock   Electric Shock of a (human) body with any source of electricity that causes a sufficient current through the skin, muscles or hair. Typically, the expression is used to denote an unwanted exposure to electricity, hence the effects are considered undesirable. The minimum current a human can feel depends on the current type (AC or DC) and frequency. A person can feel at least 1 mA (rm

POWER SYSTEMS LOSS.COM: LOSSES IN ELECTRICAL SYSTEM

What is powersystemsloss all about?    System's loss reduction is now one of the most growing trends in every electric distribution utility. Primarily triggered by economics and regulation concerns, Transmission and Distribution companies now sets more focus in reducing losses and become as an efficient utility as possible in delivering power. Information found in this site will be very useful not only to electrical practitioners but it is also our goal to help students better understand the actual world. Thank you and lets all enjoy learning! continue..   Back to basic    n case you don't know, the power we get from our household electrical outlet didn't just appear in the thin air. It may appear that it is coming out from our walls but we all know that looks can be deceiving. Before reaching our respective homes, electric current passes through miles and miles of conductors. W